
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

In collaboration with

Don’t just migrate, 
modernize
A guide to building modern apps 
to drive competitive advantage



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 2

The modern world is a digital one, and businesses must meet customers wherever 
they live, work, buy, and sell. Organizations that still rely on legacy systems and 
processes lag behind those that leverage modern cloud technology and operational 
models to innovate applications faster and compete more effectively. 

In this eBook, you’ll discover how cloud migration is the first step in driving app 
modernization and identify the elements of modern apps. You’ll learn how adopting 
DevOps creates a culture for competitive advantage and see how businesses of any 
size can modernize and still achieve speed, agility, and cost savings even with fewer 
resources or disjointed teams.

Modernization is a business priority today. To delight customers and win new 
business, organizations need to build reliable, scalable, and secure applications that 
create big customer value. That means adopting new technologies and practices, 
such as serverless computing, microservices, continuous integration/continuous 
delivery (CI/CD), and containers. The transition can be tough, but the rewards are 
worth the effort.

Why modernize?

50%
of information communication

technology spending will be directly
allocated for digital transformation

67%
of executives believe they must pick
up the pace to remain competitive

90%
of new applications are predicted

to be cloud-native by 2025

Have an AWS account?
Use self-paced workshops and training modules to 
build experimental apps as you follow this guide.

https://awsworkshop.io/


© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The benefits of modernizing
Modernizing is all about simplicity, agility, and delivering 
value. How? Automation. By automating as much of the 
development cycles as possible—including testing, 
deployments, provisioning, open-source security, and 
compliance processes—businesses are one giant step closer 
to modernization.

An organization’s migration strategy should guide its teams 
to move quickly and independently. This is the promise of a 
DevOps operational model.

3

DevOps merges formerly siloed—and sometimes 
adversarial—development and operations teams to work 
together in both synchronous and asynchronous ways to 
deliver constant and impactful outcomes for customers. 
DevOps teams automate processes that historically have 
been manual and slow to deliver customer value. From its 

What is DevOps?

inception, DevOps has been a philosophy for working—
not a conglomeration of tools or a software suite—and a 
driver for an organization’s cultural transformation 
toward modernization.

Going all in on modernization and DevOps generates 
multiple benefits.



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 4

Faster time to market
By speeding up the release cycle and offloading operational overhead, 
developers can quickly build new features. Managing the entire software 
supply chain in a single secure system across your organization offers a 
single source of truth with wide observability. Automated test and release 
processes reduce error rates, so that products are market-ready faster.

Increased innovation
Developers are 1.5x more likely to feel innovative with a mature DevOps 
model. Automating the release pipeline through CI/CD helps teams 
release high-quality code faster and more often. It also reduces the time 
it takes to test and release so that teams have more time for innovation.

Improved reliability
By automating test procedures, scanning code in development for 
vulnerabilities and monitoring at every stage of the development 
lifecycle, modern applications are reliable at deployment because any 
issues can be evaluated and addressed in real time.

Reduced costs 
With a pay-for-value pricing model, modern applications reduce the cost 
of over-provisioning or paying for idle resources. By offloading 
infrastructure management, maintenance costs are also lower.

Looking for more 
ways DevOps 
positively impacts 
an organization? 
Read the report on 
how DevOps gets 
development, 
security, and 
operations teams 
on one page.

https://about.gitlab.com/blog/2019/07/15/global-developer-report/


© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The elements of modern applications

5

While IT faces waves of pressure to support the next leading-edge technology to meet customer demands, 
organizations must remain focused on getting or maintaining a competitive edge, and they must find 
modernization efforts that create value for the enterprise. That starts by understanding the five elements 
that compose modern applications.

1. Application architecture: 
Monolith versus 
microservices

Monolith
One of the most common ways to build 
enterprise applications is on a 
monolithic architecture as a single, 
unified application where all the 
components are tightly coupled and 
working from a shared database. Most 
frameworks today are built around 
monoliths such as Spring for Java, Ruby 
on Rails, Django for Python, or Express 
for node.js. 

As monolithic applications grow, they 
require more resources, from compute 
and memory requirements to storage

and network bandwidth. Although 
these issues can be solved by scaling 
the application servers vertically up or 
horizontally out, this approach 
naturally scales the whole application, 
even if only a single module requires 
the extra resources. 

Monolithic applications are popular 
because they are fast to develop but 
difficult to scale and update as the code 
base grows because each aspect of the 
application is tightly coupled. These 
applications grow increasingly complex 
over time, complicating maintenance so 
much that even the smallest changes 
require significant effort for 
development, testing, and deployment, 
decreasing the business’ agility.

Because of the challenges inherent in 
monolithic applications, many modern 
applications have shifted to a new 
paradigm, commonly known as a 
microservices architecture. 

Microservices
Microservices are small services providing 
a bounded context of functionality—each 
potentially using their own data store—
and predominantly integrating with other 
services through event-driven 
communication. Each service is designed 
for a set of capabilities and focuses on 
solving a specific problem. If developers 
contribute more code to a service over 
time and the service becomes complex, it 
can be broken into even smaller services. 



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

It can become a single point of failure 
with fault tolerance challenges. Modern 
applications take advantage of 
decoupled data stores where there is a 
one-to-one mapping of database and 
microservice. By decoupling data and 
microservices, DevOps teams are free 
to choose the database that best fits 
the needs of the service, like choosing a 
database that is purpose-built for the 
task at hand. 

2. Software delivery: 
Automation, abstraction, 
and standardization

Front- and back-end developers need 
tools, frameworks, and processes that 
enable them to rapidly and securely 
deliver new features to customers—
often required on a daily or hourly 
cadence. Automated release pipelines, 
including CI/CD, enable teams to 
rapidly scan, test, and release lots of 
code while minimizing errors. 
Frameworks and tooling abstraction 
eliminate the complexity of 
provisioning and configuring resources. 
Standardization through infrastructure-
as-code templates provision the entire 
technology stack for an application 
through code, ensuring DevOps teams 
meet central requirements. 

A microservices architecture breaks a 
single-process application into multiple 
components that work together to 
deliver value. Any communication 
between individual components 
happens via well-defined, loosely 
coupled APIs, or through events and 
messaging. Each component service in 
a microservices architecture can be 
developed, deployed, operated, and 
scaled without affecting the 
functioning of other services. Services 
do not need to share any of their code 
or implementation with other services: 
they act as self-contained black boxes. 

Breaking monolithic applications into 
loosely coupled microservices can help 
overcome many of the challenges 
presented by monolithic applications 
because each service can be 
independently deployed and scaled. By 
ensuring each microservice has its own 
development lifecycle, DevOps teams 
are no longer tied to other teams’ 
release cycles, enabling them to 
accelerate their deployment frequency, 
improve their agility, and increase the 
business’ ability to respond to change. 

6

3. Data strategy: 
Decoupled and purpose-built

Much like a monolithic application, a 
single database is also difficult to scale. 

4. Operations: 
As serverless as possible

Modern applications have a lot of 
moving parts, including many 
microservices with unique databases 
that release features often. Serverless 
technologies reduce that support 
burden because they run without the 
need for infrastructure provisioning 
and scaling and have built-in 
availability and security. Plus, they have 
a pay-for-value billing model. There are 
serverless services for the entire 
application stack: compute, storage, 
and integration.



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Remember: 
Modernization is about simplifying too. As their architectural patterns and 
software delivery processes change, an organization should adopt an 
operational model that enables them to offload any activity that isn’t a 
core competency. 

To gain agility that can enable rapid innovation, AWS recommends building 
a microservices architecture, operating and deploying software using 
automation for things like monitoring, provisioning, cost management, 
deployment, and security and governance of applications. 

Choosing a serverless-first strategy—opting for serverless technologies 
wherever possible—enables businesses to maximize the operational 
benefits of AWS and AWS Partners. A serverless operational model allows 
them to:

• Build and run applications and services without provisioning and 
managing servers.

• Scale flexibly.

• Pay only for value.

• Automate high availability.

A serverless model also lets organizations build and manage aspects of 
their application that deliver customer value without having to worry about 
the underlying detail. 

Whether developing net-new applications or migrating legacy ones, 
building with serverless primitives for compute, data, and integration 
enables businesses to benefit from the most agility the cloud has to offer.

5. Management 
and governance: 
Programmatic guardrails

7

Managing an organization securely, 
legally, and safely is priority one, but 
strong governance often results in 
checkpoints that delay innovation. 
Increasingly, organizations address 
this by adopting the concept of 
guardrails—mechanisms such as 
processes of practices—that reduce 
both the occurrence and blast radius 
of undesirable application behavior. 
Usually expressed as code, guardrails 
can standardize processes and 
practices for the monitoring, 
provisioning, deployment, cost 
management, and security of 
applications, without creating 
bottlenecks or slowing innovation.



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adopting microservices architectural patterns doesn’t have to be an all-or-nothing 
endeavor. There are two common paths to a service-oriented architecture:

A. Wrap the existing monolith in APIs and treat it as a black box while 
building net-new functionality as microservices.

B. Refactor the monolith to microservices using the strangler pattern, 
where development teams carve out functionality that is already fairly 
decoupled from the monolith. 

Both avenues have benefits and downsides, but both require first setting up the 
appropriate development infrastructure. This includes building automated 
software delivery pipelines to independently build, test, and deploy executable 
services, plus, the infrastructure to secure, monitor, operate, and debug a 
distributed system. 

Keeping the monolith as-is can work if it’s a standalone system that won’t require 
updates to its core functionality. In this case, most new development effort can go 
to building new microservices that simply connect to the monolith through APIs. 

If the monolith can’t be maintained or thrown away, but some of its parts need to 
be rewritten, using the strangler pattern is the best approach. This functionality is 
decoupled from the monolith behind an API for easy replacement and decommissioning 
once the microservice is built. This means capabilities that don’t require changes to 
many client-facing apps—and potentially don’t need their own data store—are 
ideal first candidates. 

For example, in an e-commerce application, a few potential services to consider 
are authentication, invoicing, or customer profiles. When carving out their first few 
microservices, most DevOps teams aim to test and optimize their software delivery 
pipelines and API approaches and upskill team members, rather than optimizing 
for functionality.

8



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Don’t just migrate, modernize. 
A step-by-step guide 
The proliferation of fast, affordable computing has allowed 
organizations of all sizes to create internal efficiencies and 
reach more customers through digital products. However, the 
ubiquity of tools, multiple paths to market, and changing 
consumer preferences mean businesses in every industry 
must innovate faster than ever to remain competitive. 

Modern applications that are built on a microservices 
architecture enable and accelerate innovation by distributing 
the effort and investment over time and across smaller 
teams—automating and increasing the speed of testing and 
delivering changes to the market. Modern applications allow 
fine-grained resource optimization and enable DevOps teams 
to rapidly scale both how they build products and how they 
run them.

Here’s how to start modernizing beyond migration.

9

When responding to a compelling event—for example, Data 
Center Exit—start by quickly migrating an existing monolith 
(Java Spring Boot) to the AWS Cloud using a variety of tools 
and patterns, including lifting and shifting with AWS Elastic 
Beanstalk and containers. 

Outcome
A functioning, scalable cloud-based application

STEP 1

Migrate the monolith



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Modern applications take advantage of decoupled data stores 
where there is a one-to-one mapping of database and microservice. 

Outcome
Decoupled data and microservices that enable DevOps 
teams to choose the database that best fits the needs of 
the service

STEP 4

Refactor data to microservices

Identify bounded contexts and apply common migration 
patterns (such as the strangler pattern) within a monolithic 
architecture to create microservices.

Outcome
An established foundation to start decoupling and creating 
microservices, while the application is still fully functional

STEP 3

Create microservices

Once the business has responded to the compelling event, the 
team should focus on building application release automation 
with package management, and they should adopt DevOps 
and agile practices. To create speed and agility, they should 
start to identify common CI/CD patterns and implement these 
on AWS or with AWS Partner products such as JFrog
Artifactory, which serves as the single source of truth for all 
packages, container images, and Helm charts as they move 
across the entire DevOps pipeline.

Outcome
Release pipelines that are fully automated, robust, and 
repeatable, enabling faster releases and increased agility to 
serve customers

STEP 2

Build application release automation 
and package management



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

Share the newly gained knowledge with the rest of the 
organization. Create internal programs like hackathons, workshops, 
and bug bounties to build collaboration and continue driving the 
modernization strategy.

Outcome
Internal champions and centers of excellence that help 
accelerate the modernization journey

STEP 7

Initiate hackathons, workshops, and 
bug bounties

Enable common authentication and authorization patterns 
with microservices including technology like OAuth, Bear 
Tokens, and JWT.

Outcome
Secured services with role-based access control (RBAC)

STEP 6

Implement API-based microservice 
authentication and authorization

Allow microservices to communicate by implementing 
messaging and event-driven architectures. Focus on common 
eventing patterns such as Event Notification, Event Carried 
State Transfer, Event Sourcing, and CQRS. Apply these 
patterns during the modernization journey.

Outcome
Technology independence, established event-driven 
architectures, and communication between decoupled 
microservices

STEP 5

Implement microservice messaging and 
event-driven architectures



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Monster

Every day for 25 years, Monster—a global leader in connecting 
people and jobs—has worked to transform the recruiting industry. 
Today, the company leverages advanced technology including 
intelligent digital, social, and mobile solutions, its flagship website 
Monster.com, Monster’s innovative app, and a vast array of 
products and services to match employers and candidates.

Situation

12

After 20 years of market leadership, Monster was ready to refresh 
core technologies that hadn’t kept pace with market changes. 
Legacy applications built on monolithic architectures required 
many months to release even a single new feature into production, 
which slowed innovation. “The dependencies between some of 
the components was so extreme,” recalled Martin Eggenberger, 
Monster’s chief architect. “We just didn’t have any clear idea 
what was running there.”

Storing artifacts in cloud buckets made versioning, labeling, and 
promotion very challenging. ”It became very, very obvious rather 
quickly that we had to go for a complete digital transformation 
of the Monster engineering organization,” Eggenberger remarked.

Challenges

Monster uses AWS for its operational systems and self-manages a 
high-availability installation of the JFrog Platform in an EKS cluster in 
its home region. Ninety developers from 15 globally dispersed teams 
build core applications on the Java Spring Framework, with additional 
development for NodeJS, Python, and other language environments.

Solution

JFrog Artifactory enables an omniverse of polyglot development 
with secure local repositories for Maven, npm, PiP, Docker, Helm, 
and more. Artifactory’s virtual repositories unify local package 
management with cached access to remote resources like Maven 
Central and Docker Hub, while JFrog Xray helps Monster stay 
vigilant against vulnerable components and builds before they 
reach production.

Monster promotes cloud-native builds using JFrog Artifactory repositories 
for development, testing (including JFrog Xray vulnerability scanning), and 
staging. Spinnaker pulls from private Docker registries in JFrog Artifactory 
to deliver services into Kubernetes clusters in AWS and elsewhere for canary 
testing and production.

Instead of a 15-month cycle, Eggenberger boasts that “today, 
Monster can release virtually on request.”

Results

CASE STUDY This would require a major reinvention of its core technologies 
to be cloud-native, built around containerized microservices 
architectures and Kubernetes.



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Explore the AWS Builders’ Library

• Attend an AWS modernization workshops

• Visit JFrog on the AWS Marketplace

Learn more now

https://aws.amazon.com/builders-library/
https://awsworkshop.io/
https://partners.amazonaws.com/partners/001E000001d9Oi1IAE/JFrog

